White Papers

:
-or-
:
-or-
:
-or-
:

ATTENTION: For instructions on how to properly link to these white papers. click here 46 result(s) found.
Number Title & Abstract
Pdf
WP-232 v0
Efficiency Analysis of Consolidated vs. Conventional Server Power Architectures
Open-source IT systems, like those designed by the Open Compute Project (OCP), are redefining how power is distributed within an IT rack by replacing internal server power supplies with a centralized rack-level power supply. In this paper, we investigate the efficiencies of conventional internal server PSU architectures and centralized rack-level PSU architectures (12VDC and 48VDC). While many believe that consolidating power supplies leads to significant efficiency gains, we found otherwise. With best-in-class components, the consolidated 12VDC rack-level PSU architecture provides a small incremental energy efficiency improvement over the conventional architecture. And consolidating at 48VDC provides another small incremental energy efficiency improvement over 12VDC.
Pdf
WP-223 v0
Cost Benefit Analysis of Edge Micro Data Center Deployments
Several IT trends including internet of things (IoT) and content distribution networks (CDN) are driving the need to reduce telecommunications latency and bandwidth costs. Distributing “micro” data centers closer to the points of utilization reduces the latency and costs from the cloud or other remote data centers. This distributed data center architecture also provides physical infrastructure benefits that apply to any small data center regardless of the latency requirement. This paper explains how micro data centers take advantage of existing infrastructure and demonstrates how this architecture reduces capital expenses by 42% over a traditional build. Other benefits are discussed including shorter project timelines.
Pdf
WP-260 v0
Specifying Data Center IT Pod Architectures
The desire to deploy IT at large scale efficiently and quickly has forced change in the way physical infrastructure is deployed and managed in the white space. Fully integrated racks complete with IT that roll into place, hard floor data halls, and air containment are just a few of the trends. Designing and deploying IT using standardized blocks of racks (or pods) facilitates these trends. This paper explains how to specify the physical infrastructure for an IT pod and describes optimum configurations based on available power feeds, physical space, and targeted average rack power densities.
Pdf
WP-256 v0
Why Cloud Computing is Requiring us to Rethink Resiliency at the Edge
Use of cloud computing by enterprise companies is growing rapidly. A greater dependence on cloud-based applications means businesses must rethink the level of redundancy of the physical infrastructure equipment (power, cooling, networking) remaining on-premise, at the “Edge”. In this paper, we describe and critique the common physical infrastructure practices seen today, propose a method of analyzing the resiliency needed, and discuss best practices that will ensure employees remain connected to their business critical applications.
Pdf
WP-217 v0
How to Prepare and Respond to Data Center Emergencies
Data center operations and maintenance teams must be prepared to act swiftly and surely without warning. Unforeseen problems, failures, and dangers can lead to injury or downtime. Good preparation and process, however, can quickly and safely mitigate the impact of emergencies and help prevent them from happening again. This paper describes a framework for an effective emergency preparedness and response strategy for mission critical facilities. This strategy is composed of 7 elements arranged across the 3 categories of Emergency Response Procedures, Emergency Drills, and Incident Management. Each of the elements are described and practical advice is given to assist in implementing this strategy.
Pdf
WP-226 v0
The Drivers and Benefits of Edge Computing
Internet use is trending towards bandwidth-intensive content and an increasing number of attached “things”. At the same time, mobile telecom networks and data networks are converging into a cloud computing architecture. To support needs today and tomorrow, computing power and storage is being inserted out on the network edge in order to lower data transport time and increase availability. Edge computing brings bandwidth-intensive content and latency-sensitive applications closer to the user or data source. This white paper explains the drivers of edge computing and explores the various types of edge computing available.
Pdf
WP-218 v0
Quantitative Analysis of a Prefabricated vs. Traditional Data Center
Prefabricated modular data centers offer many advantages over traditionally built data centers, including flexibility, improved predictability, and faster speed of deployment. Cost , however, is sometimes stated as a barrier to deploying these designs. In this paper, we focus on quantifying the capital cost differences of a prefabricated vs. traditional 440 kW data center, both built with the same power and cooling architecture, in order to highlight the key cost drivers, and to demonstrate that prefabrication does not come at a capex premium . The analysis was completed and validated with Romonet’s Cloud-based Analytics Platform, a vendor-neutral industry resource.
Pdf
WP-155 v0
Calculating Space and Power Density Requirements for Data Centers
The historic method of specifying data center power density using a single number of watts per square foot (or watts per square meter) is an unfortunate practice that has caused needless confusion as well as waste of energy and money. This paper demonstrates how the typical methods used to select and specify power density are flawed, and provides an improved approach for establishing space requirements, including recommended density specifications for typical situations.
Pdf
WP-156 v0
Choosing the Optimal Data Center Power Density
The choice of IT rack power densities has a direct impact on the capital cost of the data center. There are significant savings in developing a data center with an average rack power density of at least 5 kW per rack, however, densities higher than ~15 kW per rack show no further relevant savings. This white paper analyzes these costs and presents a flexible architecture to accommodate a well-specified density, and discusses the importance of operational policies in enforcing the specification.
Pdf
WP-166 v0
Practical Considerations for Implementing Prefabricated Data Centers
Implementing prefabricated modular data centers results in well-understood benefits including speed of deployment, predictability, scalability, and lifecycle cost. The process of deploying them – from designing the data center, to preparing the site, to procuring the equipment, to installation – is quite different than that of a traditional data center. This paper presents practical considerations, guidance, and results that a data center manager should expect from such a deployment.
Pdf
WP-195 v0
Fundamentals of Managing the Data Center Life Cycle for Owners
Just as good genes do not guarantee health and well-being, a good design alone does not ensure a data center is well-built and will remain efficient and available over the course of its life span. For each phase of the data center’s life cycle, proper care and action must be taken to continuously meet the business needs of the facility. This paper describes the five phases of the data center life cycle, identifies key tasks and pitfalls, and offers practical advice to facility owners and management.
Pdf
WP-2 v0
Top 10 Mistakes in Data Center Operations: Operating Efficient and Effective Data Centers
How can you avoid making major mistakes when operating and maintaining your data center(s)? The key lies in the methodology behind your operations and maintenance program. All too often, companies put immense amounts of capital and expertise into the design of their facilities. However, when construction is complete, data center operations are an afterthought. This whitepaper explores the top ten mistakes in data center operations.
Pdf
WP-4 v0
The Importance of Critical Site Documentation and Training
All studies of downtime in mission-critical environments come to the same conclusion: human error is a leading cause. The most effective way to fight this threat to your business is with the double-edged sword of documentation and training. Properly trained facility personnel understand how the infrastructure works, how to operate and maintain it safely, and how to respond when the equipment does not function as expected. Thorough, accurate, and readily accessible documentation is both the foundation of this knowledge and the means to implement it. The establishment of a comprehensive documentation and training program is a crucial, but rarely achieved goal. This white paper describes the proper methodology for building an effective, organized program that addresses the special requirements of critical environments.
Pdf
WP-5 v0
A Practical Guide to Disaster Avoidance in Mission-Critical Facilities
A disaster preparedness plan is crucial to organizations operating in 24/7/365 environments. With zero disruption the goal, management must carefully evaluate and mitigate risks to the physical infrastructure that supports the mission-critical facility. While business continuity planning typically addresses Information Technology, this paper reviews and discusses the requirements of the facility’s infrastructure as part of a comprehensive business continuity disaster plan. Without a proper disaster mitigation plan for the facility’s infrastructure, the overall business continuity plan is built on a risky foundation. If a natural, human, or technological disaster strikes your facility, are you and your infrastructure prepared? Does your organization have procedures in place to prepare for severe winter storms, earthquakes, tornados, hurricanes, or other disasters? Surviving tomorrow’s disaster requires planning today.
Pdf
WP-66 v0
Estimating a Data Center’s Electrical Carbon Footprint
Data center carbon emissions are a growing global concern. The U.S. Environmental Protection Agency (EPA) cites data centers as a major source of energy consumption in the United States. The EPA has set an efficiency target for government data centers: a 20% reduction in carbon footprint by 2011. European Union (EU) members have agreed to cut their combined emissions of greenhouse gases to 8% below the 1990 level by 2012. Data center owners will be increasingly challenged to report their carbon emissions. This paper introduces a simple approach, supported by free web-based tools, for estimating the carbon footprint of a data center anywhere in the world.
Pdf
WP-160 v2
Specification of Modular Data Center Architecture
There is a growing consensus that conventional legacy data center design will be superseded by modular scalable data center designs. Reduced total cost of ownership, increased flexibility, reduced deployment time, and improved efficiency are all claimed benefits of modular scalable designs. Yet the term “modular”, when and where modularity is appropriate, and how to specify modularity are all poorly defined. This paper creates a framework for modular data center architecture and describes the various ways that modularity can be implemented for data center power, cooling, and space infrastructure and explains when the different approaches are appropriate and effective.
Pdf
WP-165 v2
Types of Prefabricated Modular Data Centers
Data center systems or subsystems that are pre-assembled in a factory are often described with terms like prefabricated, containerized, modular, skid-based, pod-based, mobile, portable, self-contained, all-in-one, and more. There are, however, important distinctions between the various types of factory-built building blocks on the market. This paper proposes standard terminology for categorizing the types of prefabricated modular data centers, defines and compares their key attributes, and provides a framework for choosing the best approach(es) based on business requirements.
Pdf
WP-163 v3
Benefits and Drawbacks of Prefabricated Modules for Data Centers
Standardized, pre-assembled and integrated data center modules, also referred to in the data center industry as containerized or modular data centers, allow data center designers to shift their thinking from a customized “construction” mentality to a standardized “site integration” mentality. Prefabricated modules are faster to deploy, more predictable, and can be deployed for a similar cost to traditional stick-built data centers. This white paper compares both scenarios, presents the advantages and disadvantages of each, and identifies which environments can best leverage the prefabricated module approach.
Pdf
WP-7 v1
Maximizing Uptime of Critical Systems in Commercial and Industrial Applications
As technology and information reach into every corner of our world, the availability of critical systems in industrial process and facility management is more important than ever. Uptime and the availability of critical process information is no longer a lofty goal, but is a necessity to remain competitive. Much has been made of uptime with respect to data centers. However, applications exist within industrial and commercial facilities that also merit “mission critical” treatment even if the larger facility as a whole is not viewed as such. Maintaining productivity and overall equipment effectiveness (OEE) requires design and operational practices that maximize uptime. This paper describes those key practices in the context of the facility life cycle.
Pdf
WP-174 v1
Practical Options for Deploying Small Server Rooms and Micro Data Centers
Small server rooms and branch offices are typically unorganized, unsecure, hot, unmonitored, and space constrained. These conditions can lead to system downtime or, at the very least, lead to “close calls” that get management’s attention. Practical experience with these problems reveals a short list of effective methods to improve the availability of IT operations within small server rooms and branch offices. This paper discusses making realistic improvements to power, cooling, racks, physical security, monitoring, and lighting. The focus of this paper is on small server rooms and branch offices with up to 10kW of IT load.
Pdf
WP-116 v3
Standardization and Modularity in Data Center Physical Infrastructure
Failure to adopt modular standardization as a design strategy for data center physical infrastructure (DCPI) is costly on all fronts: unnecessary expense, avoidable downtime, and lost business opportunity. Standardization and its close relative, modularity, create wide-ranging benefits in DCPI that streamline and simplify every process from initial planning to daily operation, with significant positive effects on all three major components of DCPI business value – availability, agility, and total cost of ownership.
Pdf
WP-144 v2
Data Center Projects: Establishing a Floor Plan
A floor plan strongly affects the power density capability and electrical efficiency of a data center. Despite this critical role in data center design, many floor plans are established through incremental deployment without a central plan. Once a poor floor plan has been deployed, it is often difficult or impossible to recover the resulting loss of performance. This paper provides structured floor plan guidelines for defining room layouts and for establishing IT equipment layouts within existing rooms.
Pdf
WP-158 v3
Guidance for Calculation of Efficiency (PUE) in Data Centers
Before data center infrastructure efficiency can be benchmarked using PUE or other metrics, there must be agreement on exactly what power consumptions constitute IT loads, what consumptions constitute physical infrastructure, and what loads should not be counted. Unfortunately, commonly published efficiency data is not computed using a standard methodology, and the same data center will have different efficiency ratings when different methodologies are applied. This paper explains the problem and describes a standardized method for classifying data center loads for efficiency calculations.
Pdf
WP-86 v2
Power Protection for Digital Medical Imaging and Diagnostic Equipment
Medical imaging and diagnostic equipment (MIDE) is increasingly being networked to Picture Archiving and Communications Systems (PACS), Radiology Information Systems (RIS), Hospital Information Systems (HIS), and getting connected to the hospital intranet as well as the Internet. Failing to implement the necessary physical infrastructure can result in unexpected downtime, and safety and compliance issues, which translates into lost revenue and exposure to expensive litigations, negatively affecting the bottom line. This paper explains how to plan for physical infrastructure when deploying medical imaging and diagnostic equipment, with emphasis on power and cooling.
Pdf
WP-164 v1
TCO Analysis of a Traditional Data Center vs. a Scalable, Prefabricated Data Center
Standardized, scalable, pre-assembled, and integrated data center facility power and cooling modules provide a “total cost of ownership” (TCO) savings of 30% compared to traditional, built-out data center power and cooling infrastructure. Avoiding overbuilt capacity and scaling the design over time contributes to a significant percentage of the overall savings. This white paper provides a quantitative TCO analysis of the two architectures, and illustrates the key drivers of both the capex and opex savings of the improved architecture.
Pdf
WP-122 v2
Guidelines for Specification of Data Center Criticality / Tier Levels
A framework for benchmarking a future data center’s operational performance is essential for effective planning and decision making. Currently available criticality or tier methods do not provide defensible specifications for validating data center performance. An appropriate specification for data center criticality should provide unambiguous defensible language for the design and installation of a data center. This paper analyzes and compares existing tier methods, describes how to choose a criticality level, and proposes a defensible data center criticality specification. Maintaining a data center’s criticality is also discussed.
Pdf
WP-171 v1
Considerations for Owning versus Outsourcing Data Center Physical Infrastructure
When faced with the decision of upgrading an existing data center, building new, or leasing space in a retail colocation data center, there are both quantitative and qualitative differences to consider. The 10-year TCO may favor upgrading or building over outsourcing, however, this paper demonstrates that the economics may be overwhelmed by a business’ sensitivity to cash flow, cash cross-over point, deployment timeframe, data center life expectancy, regulatory requirements, and other strategic factors. This paper discusses how to assess these key factors to help make a sound decision.
Pdf
WP-142 v2
Data Center Projects: System Planning
Planning of a data center physical infrastructure project need not be a time consuming or frustrating task. Experience shows that if the right issues are resolved in the right order by the right people, vague requirements can be quickly translated into a detailed design. This paper outlines practical steps to be followed that can cut costs by simplifying and shortening the planning process while improving the quality of the plan.
Pdf
WP-145 v1
The Top 9 Mistakes in Data Center Planning
Why do so many data center builds and expansions fail? This white paper answers the question by revealing the top 9 mistakes organizations make when designing and building new data center space, and examines an effective way to achieve success through the Total Cost of Ownership (TCO) approach.
Pdf
WP-175 v1
Preparing the Physical Infrastructure of Receiving Data Centers for Consolidation
The consolidation of one or more data centers into an existing data center is a common occurrence. This paper gives examples of what is becoming a standard architecture for preparing the physical infrastructure in the receiving data center. This approach allows for shorter timelines and high efficiency while avoiding the commonly expected difficulties and complexities often experienced with consolidation projects.
Pdf
WP-161 v1
Allocating data center energy costs and carbon to IT users
Are complicated software and instrumentation needed to measure and allocate energy costs and carbon to IT users? Or can we get by with simple, low cost methods for energy cost and carbon allocation? How precise do we need to be? This paper provides an overview of energy cost and carbon allocation strategies and their precision. We show that it is both easy and inexpensive for any data center, large or small, new or old, to get started allocating costs and carbon, but the expense and complexity escalate and ROI declines when excessive precision is specified.
Pdf
WP-141 v1
Data Center Projects: Project Management
In data center design/build projects, flaws in project management and coordination are a common – but unnecessary – cause of delays, expense, and frustration. The ideal is for project management activities to be structured and standardized like interlocking building blocks, so all parties can communicate with a common language, avoid responsibility gaps and duplication of effort, and achieve an efficient process with a predictable outcome. This paper presents a framework for project management roles and relationships that is understandable, comprehensive, and adaptable to any size project.
Pdf
WP-140 v1
Data Center Projects: Standardized Process
As the design and deployment of data center physical infrastructure moves away from art and more toward science, the benefits of a standardized and predictable process are becoming compelling. Beyond the ordering, delivery, and installation of hardware, any build or upgrade project depends critically upon a well-defined process as insurance against surprises, cost overruns, delays, and frustration. This paper presents an overview of a standardized, step-by-step process methodology that can be adapted and configured to suit individual requirements.
Pdf
WP-154 v2
Electrical Efficiency Measurement for Data Centers
Data center electrical efficiency is rarely planned or managed. The unfortunate result is that most data centers waste substantial amounts of electricity. Today it is both possible and prudent to plan, measure, and improve data center efficiency. In addition to reducing electrical consumption, efficiency improvements can gain users higher IT power densities and the ability to install more IT equipment in a given installation. This paper explains how data center efficiency can be measured, evaluated, and modeled, including a comparison of the benefits of periodic assessment vs. continuous monitoring.
Pdf
WP-117 v1
Data Center Physical Infrastructure: Optimizing Business Value
To stay competitive in today’s rapidly changing business world, companies must update the way they view the value of their investment in data center physical infrastructure (DCPI). No longer are simply availability and upfront cost sufficient to make adequate business decisions. Agility, or business flexibility, and low total cost of ownership have become equally important to companies that will succeed in a changing global marketplace.
Pdf
WP-6 v4
Determining Total Cost of Ownership for Data Center and Network Room Infrastructure
An improved method for measuring total cost of ownership (TCO) of data center and network room physical infrastructure and relating these costs to the overall Information Technology infrastructure is described, with examples. The cost drivers of TCO are quantified. The largest cost driver is shown to be unnecessary unabsorbed costs resulting from the oversizing of the infrastructure.
Pdf
WP-114 v1
Implementing Energy Efficient Data Centers
Electricity usage costs have become an increasing fraction of the total cost of ownership (TCO) for data centers. It is possible to dramatically reduce the electrical consumption of typical data centers through appropriate design of the network-critical physical infrastructure and through the design of the IT architecture. This paper explains how to quantify the electricity savings and provides examples of methods that can greatly reduce electrical power consumption.
Pdf
WP-37 v7
Avoiding Costs From Oversizing Data Center and Network Room Infrastructure
The physical and power infrastructure of data centers and network rooms is typically oversized by more than 100%. Statistics related to oversizing are presented. The costs associated with oversizing are quantified. The fundamental reasons why oversizing occurs are discussed. An architecture and method for avoiding oversizing is described.
Pdf
WP-143 v1
Data Center Projects: Growth Model
Long term data center or network room capacity planning may seem impossible in the face of evolving IT technology and business requirements. Nevertheless, data center facilities have a lifetime that may span many generations of IT equipment, so planning – or lack of planning – can have a large impact on the effectiveness of investments. Many unnecessary costs can be avoided with simple planning strategies, and even uncertainty itself can be incorporated into a plan. This paper shows a simple and effective way to develop a capacity plan for a data center or network room.
Pdf
WP-119 v1
Creating Order from Chaos in Data Centers and Server Rooms
Data center professionals can rid themselves of messy racks, sub-standard under floor air distribution, and cable sprawl with a minimum of heartache and expense. Whether the data center mess is created over years of mismanagement or whether the cable-choked data center is inherited, solutions for both quick fixes and longer term evolutionary changes exist. This paper outlines several innovative approaches for dealing with the symptoms of chaos and for eliminating the root causes of disorder.
Pdf
WP-89 v1
Data Center Physical Infrastructure for Radio Frequency Identification (RFID) Systems
Radio frequency identification (RFID) technology helps automate a variety of business processes, improving their efficiencies. It generates a huge volume of data that needs to be filtered, processed and stored, and generally requires its own virtual local area network (VLAN). To gain all the promised benefits and return on investment of RFID, the network must be highly available. The data center physical infrastructure (DCPI) must be assessed for vulnerabilities in power, cooling, physical security, and other CCPI elements. Failing to plan for DCPI can lead to disruption of critical business processes resulting in loss of revenue and competitive advantage. This paper provides an understanding of an RFID network and its components, identifies critical DCPI locations, and explains how to plan for high availability.
Pdf
WP-113 v2
Electrical Efficiency Modeling for Data Centers
Conventional models for estimating electrical efficiency of data centers are grossly inaccurate for real-world installations. Estimates of electrical losses are typically made by summing the inefficiencies of various electrical devices, such as power and cooling equipment. This paper shows that the values commonly used for estimating equipment inefficiency are quite inaccurate. A simple, more accurate efficiency model is described that provides a rational basis to identify and quantify waste in power and cooling equipment.
Pdf
WP-84 v1
Data Center Physical Infrastructure for Enterprise Wireless LANs
Wireless LAN (WLAN) deployments can result in unexpected or unplanned power, cooling, management and security requirements. Most wiring closets do not have uninterruptible power supplies (UPS), and they do not provide adequate ventilation or cooling required to prevent equipment overheating. Understanding the unique data center physical infrastructure (DCPI) requirements of WLAN equipment allows planning for a successful and cost effective deployment. This paper explains how to plan for DCPI while deploying indoor WLANs in small, medium or large enterprise, with emphasis on power and cooling. Simple, fast, reliable, and cost effective strategies for upgrading old facilities or building new facilities are described.
Pdf
WP-76 v1
Modular Systems: The Evolution of Reliability
Nature proved early on that in complex systems, modular designs are the ones that survive and thrive. An important contributor to this success is the critical reliability advantage of fault tolerance, in which a modular system can shift operation from failed modules to healthy ones while repairs are made. In data centers, modular design has already taken root in new fault-tolerant architectures for servers and storage systems. As data centers continue to evolve and borrow from nature’s blueprints, data center physical infrastructure (DCPI) must also evolve to support new strategies for survival, recovery, and growth.
Pdf
WP-112 v1
Performing Effective MTBF Comparisons for Data Center Infrastructure
Mean Time Between Failure (MTBF) is often proposed as a key decision making criterion when comparing data center infrastructure systems. Misleading values are often provided by vendors, leaving the user incapable of making a meaningful comparison. When the variables and assumptions behind the numbers are unknown or are misinterpreted, bad decisions are inevitable. This paper explains how MTBF can be effectively used as one of several factors for specification and selection of systems, by making the assumptions explicit.
Pdf
WP-78 v1
Mean Time Between Failure: Explanation and Standards
Mean Time Between Failure is a reliability term used loosely throughout many industries and has become widely abused in some. Over the years the original meaning of this term has been altered which has led to confusion and cynicism. MTBF is largely based on assumptions and definition of failure and attention to these details are paramount to proper interpretation. This paper explains the underlying complexities and misconceptions of MTBF and the methods available for estimating it.