Product Environmental Profile
Replacement Battery Cartridge
Product Environmental Profile - PEP

Product overview
The main purpose of Replacement Battery Cartridge (RBC) product range is to provide replacement battery packs in APC-branded Uninterruptible Power Supplies (UPSs). Electrical capacity of the product range: from 3Ah to 280Ah.
The product range consists of a non-spillable sealed lead acid battery, wires and connectors (for attaching to the UPS), labels, and plastic support structure to hold multiple batteries together. The representative product used for the analysis is the RBC12. The electrical capacity of the reference product is 57.6 Ah. The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.
The environmental analysis was performed in conformity with ISO 14040.

<table>
<thead>
<tr>
<th>Products</th>
</tr>
</thead>
</table>

Constituent materials
The mass of the product range is from 1.4 kg and 108.5 kg including packaging. It is 14.6 kg for the RBC12.
The constituent materials are distributed as follows:

Substance assessment
Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorized proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive. The use of lead is authorized in batteries.

Manufacturing
The replacement battery cartridge product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution
The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The RBC12 replacement battery cartridge packaging weight is 3.8 kg. It consists of cardboard, paper based labels and wooden pallets.
Product Environmental Profile - PEP

Use

The products of the Replacement battery cartridge range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The electrical power consumption depends on the conditions under which the product is implemented and used. The battery pack consumes a small amount of energy; the UPS unit maintains the battery at full charge. The electricity consumption for the battery pack itself was estimated according to the technical documentation of the batteries. The results are presented in the following table:

<table>
<thead>
<tr>
<th>Product</th>
<th>Annual electricity consumption (kWh per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC12 (Reference)</td>
<td>0.7488</td>
</tr>
<tr>
<td>Worst case</td>
<td>7.28</td>
</tr>
<tr>
<td>Best case</td>
<td>0.078</td>
</tr>
</tbody>
</table>

This thermal dissipation represents less than 1% of the power which passes through the product.

End of life

At end of life, the products in the replacement battery cartridge range have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains batteries that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range.

The recyclability potential of the products has been evaluated using the “ECO’DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 41%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:

- the calculation was performed on the RBC12 Replacement battery cartridge
- product packaging: is included
- Installation components: no special components included.
- scenario for the Use phase: this product range is included in the category 2: Energy consuming products
- Assumed service life is 5 years
 - Use scenario is: Electricity consumption to maintain the full charge = 0.7488 kWh per year.
 - The electrical power model used for calculation is the average European model.
 - The products of this range do not require any special maintenance operations
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>RBC12 Replacement battery cartridge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S = M + D + I + U + E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>1.09E-12</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>7.09E+02</td>
</tr>
<tr>
<td>Water depletion</td>
<td>g=CO₂</td>
<td>3.93E+04</td>
</tr>
<tr>
<td>Global Warming</td>
<td>g=CFC-11</td>
<td>1.15E-02</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m³</td>
<td>4.46E+07</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g=C₂H₄</td>
<td>2.10E+01</td>
</tr>
<tr>
<td>Air acidification</td>
<td>g=H⁺</td>
<td>1.36E-01</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>g=PO₄</td>
<td>6.29E+03</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g=PO₄</td>
<td>1.09E+00</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>3.32E-01</td>
</tr>
</tbody>
</table>

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 4, and with its database version 11.0.

The Manufacturing phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.
Product Environmental Profile - PEP

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range. Depending on the impact analysis, the environmental indicators of other products in this family may be proportional extrapolated by the mass of the products.

System approach

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive. Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Raw Material Depletion (RMD)
This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED)
This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources.
This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD)
This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.

Global Warming (GW)
The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO₂.

Ozone Depletion (OD)
This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Air Toxicity (AT)
This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC)
This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA)
The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests.
The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.

Water Toxicity (WT)
This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

Hazardous Waste Production (HWP)
This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc.
It is expressed in kg.

APC by Schneider Electric has achieved compliance status and the accuracy of data in this PEP document is based on our best knowledge as of the date of its publication.

For more information please go to: http://www.apc.com/recycle/

Schneider Electric Industries SAS
35, rue Joseph Monier
CS 30323
F- 92506 Rueil Malmaison Cedex
RCS Nanterre 934 503 439
Capital social 896 313 776 €
www.schneider-electric.com

APC by Schneider Electric
132 Fairgrounds Road
West Kingston, RI 02892
Phone 800-788-2208
www.APC.com

© 2012 - Schneider Electric – All rights reserved

© 2011 - Schneider Electric – All rights reserved

ENVPEP111027EN_V0 05-2012