Product Environmental Profile
Back-UPS®

PEP ecopassport SCHN-2011-565-V0
Product overview

The Back-UPS® product range provides devices that provide emergency power to a load when the input power source fails. While not specific to any kind of equipment, Back-UPS® typically are used to retain power integrity of household computer equipment.

This range consists of Back-UPS® with different form factors (tower and surge protector) and a maximum configurable power between 210 Watts / 350 VA and 865 Watts / 1500 VA.

The representative product used for the analysis is the BK500: APC Back-UPS®, 300 Watts / 500 VA, Input 120V / Output 120V, Interface Port USB

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

<table>
<thead>
<tr>
<th>Products</th>
<th>Back-UPS® - “Tower” Style – BK 200/300/325/475/500/650/1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Back-UPS® - “Surge” Style – BE 325/350(G)/400/450(G)/500/525/550/600/650(G)(G1)/700</td>
</tr>
<tr>
<td></td>
<td>Back-UPS® - BH/BT/BN/BI/BZ 500/650/800/850/1000/1250</td>
</tr>
<tr>
<td></td>
<td>Back-UPS® - BR 500/600/650/800/1000/1100/1200/1300/1500</td>
</tr>
<tr>
<td></td>
<td>Back-UPS® - BX 550/650/800</td>
</tr>
</tbody>
</table>

This includes country specific designations and 120V, 230V, 100V products

Constituent materials

The mass of the product range is from 3.3 kg and 15 kg including packaging. It is 8 kg for the BK500.

The constituent materials are distributed as follows:

- **Cardboard**: 15.4%
- **Cables and connectors**: 8.7%
- **Steel**: 8.0%
- **Electronic circuit > 10cm²**: 5.1%
- **PET Polyethylene Terephthalate**: 2.0%
- **Batteries (Pb)**: 21.2%
- **Copper**: 27.1%
- **Other material under 1.2% with a total of 1.2%**
- **PUR Polyurethane**: 1.3%
- **Lead, mercury, cadmium, hexavalent chromium, flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE)**

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive.

The battery pack within this product range are designed in conformity with the requirements of the Battery Directive (European Directive 2006/66/EC of 26 September 2006) and do not contain, or only contain in authorised proportions, lead, mercury and cadmium as mentioned in the Battery Directive.

Manufacturing

The Back-UPS® product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union’s packaging directive.

The Back-UPS packaging weight is 1.4 kg. It consists of cardboard and paper.
Product Environmental Profile - PEP

Use
The products of the Back-UPS® range do not generate environmental pollution (emissions) requiring special precautionary measures in standard use. Audible noise one meter from the surface of the product is between 45 and 53 dBA.

The usage scenario for Uninterruptible Power Supplies is specific; the methodology for the calculation of the electricity consumption is based on the Energy Star rules under development by the U.S. Environmental Protection Agency (Energy Star Uninterruptible Power Supply Product Category version 1, draft 2, 14 Oct 2011).

<table>
<thead>
<tr>
<th>Weighted Average Load (%)</th>
<th>Weighted Average Loss (%)</th>
<th>Weighted Average Loss (W)</th>
<th>Annual Average Consumption (kWh)</th>
<th>Lifetime Average Consumption (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK500</td>
<td>67.5%</td>
<td>1.7%</td>
<td>5.0</td>
<td>44</td>
</tr>
<tr>
<td>BR1500LCDI – Worst case</td>
<td>67.5%</td>
<td>2.4%</td>
<td>20.6</td>
<td>181</td>
</tr>
<tr>
<td>BK350 – Best case</td>
<td>67.5%</td>
<td>1.6%</td>
<td>3.3</td>
<td>29</td>
</tr>
</tbody>
</table>

End of life
At end of life, the products in the Back-UPS® range have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains batteries, external cables and electronic boards that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range.

The recyclability potential of the products has been evaluated using the “ECO'DEEE recyclability and recoverability calculation method” (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 51%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts
Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I), Use (U), and End of life (E).

Modeling hypothesis and method:
- the calculation was performed on the BK500
- product packaging: is included
- Installation components: no special components included.
- scenario for the Use phase: this product range is included in the category 2: Energy consuming product. The usage scenario for UPS is specific, the methodology for the calculation of the electricity consumption is based on the rules defined by the EPA for small household UPS.
- Assumed service life is 5 years
- Use scenario is: annual electricity consumption = 44 kWh per year
- The electrical power model used for calculation is the average European model.
- This equipment do not require any special maintenance operations
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

<table>
<thead>
<tr>
<th>Environmental indicators</th>
<th>Unit</th>
<th>BK500</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S = M + D + I + U + E</td>
<td>M</td>
</tr>
<tr>
<td>Raw Material Depletion</td>
<td>Y-1</td>
<td>9.77E+13</td>
<td>9.74E-13</td>
</tr>
<tr>
<td>Energy Depletion</td>
<td>MJ</td>
<td>3.48E+03</td>
<td>9.54E+02</td>
</tr>
<tr>
<td>Water depletion</td>
<td>dm³</td>
<td>6.77E+02</td>
<td>3.13E+02</td>
</tr>
<tr>
<td>Global Warming</td>
<td>g=CO₂</td>
<td>1.81E+05</td>
<td>5.26E+04</td>
</tr>
<tr>
<td>Ozone Depletion</td>
<td>g=CFC-11</td>
<td>1.64E-02</td>
<td>8.54E-03</td>
</tr>
<tr>
<td>Air Toxicity</td>
<td>m³</td>
<td>4.96E+07</td>
<td>2.84E+07</td>
</tr>
<tr>
<td>Photochemical Ozone Creation</td>
<td>g=C₂H₄</td>
<td>6.80E+01</td>
<td>2.40E+01</td>
</tr>
<tr>
<td>Air acidification</td>
<td>g=H⁺</td>
<td>3.00E+01</td>
<td>1.28E+01</td>
</tr>
<tr>
<td>Water Toxicity</td>
<td>dm³</td>
<td>4.49E+04</td>
<td>8.64E+03</td>
</tr>
<tr>
<td>Water Eutrophication</td>
<td>g=PO₄</td>
<td>2.51E+00</td>
<td>2.19E+00</td>
</tr>
<tr>
<td>Hazardous waste production</td>
<td>kg</td>
<td>2.82E+00</td>
<td>7.17E-01</td>
</tr>
</tbody>
</table>
Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 4, and with its database version 11.0. The Manufacturing phase and the use phase are the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: Depending on the impact analysis, the impact on the Raw Material Depletion of other products in this family may be proportional extrapolated by the mass of the products. The impacts on the other indicators are proportional to the electricity consumption.

System approach

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive. Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.
Glossary

Raw Material Depletion (RMD) This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED) This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources. This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD) This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.

Global Warming (GW) The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth’s surface being absorbed by certain gases known as “greenhouse-effect” gases. The effect is quantified in gram equivalent of CO₂.

Ozone Depletion (OD) This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Air Toxicity (AT) This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC) This indicator quantifies the contribution to the “smog” phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA) The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H⁺.

Water Toxicity (WT) This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

Hazardous Waste Production (HWP) This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

APC by Schneider Electric has achieved compliance status and the accuracy of data in this PEP document is based on our best knowledge as of the date of its publication.

For more information please go to: http://www.apc.com/recycle/