White Papers

:
-or-
:
-or-
:
-or-
:

ATTENTION: For instructions on how to properly link to these white papers. click here 6 result(s) found.
Number Title & Abstract
Pdf
WP-139 v0
Cooling Entire Data Centers Using Only Row Cooling
Row cooling is emerging as a practical total cooling solution for new data centers due to its inherent high efficiency and predictable performance. Yet some IT equipment in data centers appears incompatible with row cooling because it is not arranged in neat rows due to the nature of the equipment or room layout constraints, suggesting the ongoing need for traditional perimeter cooling to support these loads. This paper explains how a cooling system comprised only of row coolers, with no room cooling system, can cool an entire data center, including IT devices that are not in neat rows.
Pdf
WP-42 v4
Ten Cooling Solutions to Support High-density Server Deployment
High-density servers offer a significant performance per watt benefit. However, depending on the deployment, they can present a significant cooling challenge. Vendors are now designing servers that can demand over 40 kW of cooling per rack. With most data centers designed to cool an average of no more than 2 kW per rack, innovative strategies must be used for proper cooling of high-density equipment. This paper provides ten approaches for increasing cooling efficiency, cooling capacity, and power density in existing data centers.
Pdf
WP-130 v2
Choosing Between Room, Row, and Rack-based Cooling for Data Centers
Latest generation high density and variable density IT equipment create conditions that traditional data center cooling was never intended to address, resulting in cooling systems that are oversized, inefficient, and unpredictable. Room, row, and rack-based cooling methods have been developed to address these problems. This paper describes these improved cooling methods and provides guidance on when to use each type for most next generation data centers.
Pdf
WP-46 v7
Cooling Strategies for Ultra-High Density Racks and Blade Servers
Rack power of 10 kW per rack or more can result from the deployment of high density information technology equipment such as blade servers. This creates difficult cooling challenges in a data center environment where the industry average rack power consumption is under 2 kW. Five strategies for deploying ultra-high power racks are described, covering practical solutions for both new and existing data centers.
Pdf
WP-131 v1
Improved Chilled Water Piping Distribution Methodology for Data Centers
Chilled water remains a popular cooling medium; however leaks in the piping systems are a threat to system availability. High density computing creates the need to bring chilled water closer than ever before to the IT equipment, prompting the need for new high reliability piping methods. This paper discusses new piping approaches which can dramatically reduce the risk of leakage and facilitate high density deployment. Alternative piping approaches and the advantages over traditional piping systems are described.
Pdf
WP-59 v2
The Different Technologies for Cooling Data Centers
There are 13 basic heat removal methods to cool IT equipment and to transport unwanted heat to the outdoor environment. This paper describes these fundamental cooling technologies using basic terms and diagrams. 11 of these methods rely on the refrigeration cycle as the primary means of cooling. Pumped refrigerant systems provide isolation between the primary heat removal system and IT equipment. The direct air and indirect air methods rely on the outdoor conditions as the primary means cooling making them more efficient for mild climates. The information in this paper allows IT professionals to be more involved in the specification of precision cooling solutions that better align with IT objectives.