White Papers

:
-or-
:
-or-
:
-or-
:

ATTENTION: For instructions on how to properly link to these white papers. click here 6 result(s) found.
Number Title & Abstract
Pdf
WP-135 v3
Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency
Both hot-air and cold-air containment can improve the predictability and efficiency of traditional data center cooling systems. While both approaches minimize the mixing of hot and cold air, there are practical differences in implementation and operation that have significant consequences on work environment conditions, PUE, and economizer mode hours. The choice of hot-aisle containment over cold-aisle containment can save 43% in annual cooling system energy cost, corresponding to a 15% reduction in annualized PUE. This paper examines both methodologies and highlights the reasons why hot-aisle containment emerges as the preferred best practice for new data centers.
Pdf
WP-42 v4
Ten Cooling Solutions to Support High-density Server Deployment
High-density servers offer a significant performance per watt benefit. However, depending on the deployment, they can present a significant cooling challenge. Vendors are now designing servers that can demand over 40 kW of cooling per rack. With most data centers designed to cool an average of no more than 2 kW per rack, innovative strategies must be used for proper cooling of high-density equipment. This paper provides ten approaches for increasing cooling efficiency, cooling capacity, and power density in existing data centers.
Pdf
WP-130 v2
Choosing Between Room, Row, and Rack-based Cooling for Data Centers
Latest generation high density and variable density IT equipment create conditions that traditional data center cooling was never intended to address, resulting in cooling systems that are oversized, inefficient, and unpredictable. Room, row, and rack-based cooling methods have been developed to address these problems. This paper describes these improved cooling methods and provides guidance on when to use each type for most next generation data centers.
Pdf
WP-182 v0
The Use of Ceiling-Ducted Air Containment in Data Centers
Ducting hot IT-equipment exhaust to a drop ceiling can be an effective air management strategy, improving the reliability and energy efficiency of a data center. Typical approaches include ducting either individual racks or entire hot aisles and may be passive (ducting only) or active (include fans). This paper examines available ducting options and explains how such systems should be deployed and operated. Practical cooling limits are established and best-practice recommendations are provided.
Pdf
WP-59 v2
The Different Technologies for Cooling Data Centers
There are 13 basic heat removal methods to cool IT equipment and to transport unwanted heat to the outdoor environment. This paper describes these fundamental cooling technologies using basic terms and diagrams. 11 of these methods rely on the refrigeration cycle as the primary means of cooling. Pumped refrigerant systems provide isolation between the primary heat removal system and IT equipment. The direct air and indirect air methods rely on the outdoor conditions as the primary means cooling making them more efficient for mild climates. The information in this paper allows IT professionals to be more involved in the specification of precision cooling solutions that better align with IT objectives.
Pdf
WP-123 v1
Impact of High Density Hot Aisles on IT Personnel Work Conditions
The use of modern enclosed hot aisles to address increasing power densities in the data center has brought into question the suitability of working conditions in these hot aisle environments. In this paper, it is determined that the additional heat stress imposed by such high density IT environments is of minimal concern.